Sakthi College of Arts and Science, Oddanchatram DVV Clarifications / 04.05.2022 / Metric LD: 3.3.3.

SAKTHI COLLEGE OF ARTS AND SCIENCE FOR WOMEN

(RECOGNIZED UNDER SECTION 2(F) AND 12(B) OF UGC ACT 1956)

PERMANENTLY AFFILIATED TO MOTHER TERESA WOMEN'S UNIVERSITY, KODAIKANAL

Sakthi Nagar, Palakkanuthu (post), (Dindigul- Palani Main Road),

ODDANCHATRAM (Tk), Dindigul (District) - 624619

Phone: 0451-2554317 Mobile: 97509 56802

Email: scas2009@gmail.com

Sakthi College of Arts and Science, Oddanchatram DVV Clarifications / 04.05.2022 / Metric LD: 3.3.3.

To

Whomsoever concerned

Sir / Madam,

Ref: DVV Clarifications - 04.05.2022 / Metric ID: 3.3.3.

The details of the Selected Research Papers are annexed. We apologise that the two papers published by E. Amutha has been wrongly mentioned by us for this metric because she was no more in service in 2017 and so her affiliation is different.

- E. Amutha, Assistant Professor of Mathematics
 International Journal of Current Research in Science and Technology
 On Counting g-β Continues Functions, 2394-5745, 2017.
- E. Amutha, Assistant Professor of Mathematics
 International Journal of Current Research in Science and Technology
 Weakly g-w Closed sets, 2394-5745, 2017.

PRINCIPAL

Saktin College of Aris and Science for Wessen Saktin Nagar, Palakkannshin (Fu). Unumuhanian, Junin 11111-12: 619.

Name of the teacher	Name of the Journal	Title of the paper	National/ International, E ISSN or P ISSN, LINK	Year of Publication
R.Thenmozhi, Assistant Professor of Chemistry	International Conference on Systems, Science, Control, Communication, Engineering and Technology	Preparation of Spherical Silica Nanoparticles by Sol-Gel Method	International 978-81-929866-6-1 https://edlib.net/20 16/icssccet/ICSSC CET2016077.pdf	February 2016

Proceedings of ICSSCET 2016

KARPAGAM INSTITUTE OF TECHNOLOGY, INDIA

Dr. T. Ramachandran

Kokula Krishna Hari Kunasekaran, Daniel James & Saikishore Elangovan

Price: USD 200

HOME ABOUT US INDEX REQUEST	/IEW PROCEEDINGS	REPORT	DONATE	REPRINTS	CONTACT
Mobile Location Based Traffic Reduction on the Server Sides usin	g Hilbert Curve in the Mobi	le Crowd		VIEW	DOWNLOAD
An Enhanced Meta Heuristic Model for Reduction of Energy Cons	umption in Embedded Sysi	ems		VIEW	DOWNLOAD
Mobile Application for Karpagam Tech Information				VIEW	DOWNLOAD
Geographical Information System Based Android Application for B	lood Donor Search			VIEW	DOWNLOAD
Preparation of Spherical Silica Nanoparticles by Sol-Gel Method				VIEW	
A Novel Approach of an Efficient Booth Encoder for Signal Proces	sing Applications			VIEW	DOWNLOAD
Predicting Protein Interactions by using Various Algorithms on Biological Networks			VIEW	DOWNLOAD	
Development of an Enhanced Mobile Based Link Model for Residu	ual Link Lifetime (RLL) max	imization in MANE	Ī	VIEW	DOWNLOAD
Development of Personal Lung Function Monitoring Device for Asi	hma Patients Using ARM (Controller		VIEW	DOWNLOAD
				•	

International Conference on Systems, Science, Control, Communication, Engineering and Technology 2016 [ICSSCCET 2016]

ISBN	978-81-929866-6-1
Website	icssccet.org
Received	25 - February - 2016
Article ID	ICSSCCET077

VOL	02	
eMail	icssccet@asdf.res.in	
Accepted	10 - March — 2016	
eAID	ICSSCCET.2016.077	

Preparation of Spherical Silica Nanoparticles by Sol-Gel Method

R Sumathi1, R Thenmozhi2

¹Assitant Professor, Karpagam Institute Technology, Coimbatore, Tamilnadu, India. ²Assitant Professor, Sakthi College of Arts and Science for Women, Oddanchathram, Dindigul, Tamilnadu, India.

Abstract: Silica nanoparticles were synthesized by sol gel method from tetraethyl orthosilicate (TEOS), ethanol (C_2H_5OH), water (H_2O) and ammonoium hydroxide (NH_4OH) as catalyst. The morphology and structure of colloidal silica particles formed depend on the molar ratio of reagents. The XRD patterns show the amorphous nature of the particles. SEM image shows that spherical structure of silica nano particles, whose particle is varied by using different molar ratio of TEOS, C_2H_5OH and NH_3 . TEM image shows that spherical structure of silica nano particles, whose particle is determined by using same molar ratio of TEOS, C_2H_5OH and NH_3 . The EDAX analyses prove the successful synthesis of silica material.

1. INTRODUCTION

Silica nanoparticles are widely used in industrials such as electronic devices, insulator, catalysis or pharmaceuticals [1, 2] due to their attractive properties in optical properties. The most popular process of obtaining silica nanoparticles is through sol gel technique [3-7]. It involves the simultaneous hydrolysis and condensation reaction of the metal alkoxide. The resultants desired particles size and morphology of silica particles are produced through controlling parameters such as concentration of alkoxide, amount of water and concentration of ammonia or acid and solvent and aging time.

2. Experimental Methods

2.1. Preparation of Silica (SiO2) Nano powder

Chemicals used in this experiment are Tetraethyl Orthosilicate (TEOS), concentrated Ammonia (NH $_3$) and Ethanol (C $_2$ H $_5$ OH) solution. Tetraethyl Orthosilicate (TEOS) is used as the silica source. Aqueous ammonia solution was used as the catalyst. All the chemicals are purchased from Aldrich without further purification. Distilled water was used throughout the experiment Silica nanoparticles were synthesized using a standard procedure with experimental conditions provided in Table 1. The product was grained to get the silica nanoparticle.

This paper is prepared exclusively for International Conference on Systems, Science, Control, Communication, Engineering and Technology 2016 [ICSSCCET 2016] which is published by ASDF International, Registered in London, United Kingdom under the directions of the Editor-in-Chief Dr T Ramachandran and Editors Dr. Daniel James, Dr. Kokula Krishna Hari Kunasekaran and Dr. Saikishore Elangovan. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honoured. For all other uses, contact the owner/author(s). Copyright Holder can be reached at copy(@asdf.international for distribution.

2016 © Reserved by Association of Scientists, Developers and Faculties [www.ASDF.international]

Cite this article as: R Sumathi, R Thenmozhi. "Preparation of Spherical Silica Nanoparticles by Sol-Gel Method". *International Conference on Systems, Science, Control, Communication, Engineering and Technology 2016*: 401-405. Print.

Name of the teacher	Name of the Journal	Title of the paper	National/ International, E ISSN or P ISSN, LINK	Year of Publication
V.Johnsirani Assistant Professor of Chemistry	International Journal of Nano Corrosion Science and Engineering	Corrosion Inhibition By Natural Dyes	International ISSN(Online)- 2395-7018	October 2016

IJNCSE VOLUME 3: ISSUE 4: OCTOBER 2016

EDITOR - IN - CHIEF : Dr. S. RAJENDRAN

PROCEEDINGS OF NATIONAL SEMINAR ON

" NEW PERSPECTIVES IN SCIENCE AND TECHNOLOGY "

Held at

St. Antony's College Of Arts And Sciences For Women,

Thamaraipadi , Dindigul – 624005

Organized by

Department of Chemistry On 07th October 2016

Editorial Team

Mrs. A. Christy Catherine Mary and Ms. P. Nithya Devi

Corrosion Inhibition By Natural Dyes

V.Johnsirani¹, J.Sathiyabama² and SusaiRajendran³

- Department of Chemistry, Sakthi college of Arts and Science for Women, Oddanchatram, Dindigul. India. E-mail: johnsirani15 @gmail.com
- Department of Chemistry, St.Antony's college of Arts and Sciences for Women, Dindigul-624005.

Abstract

The Inhibition efficiency [IE] of an aqueous extract of pipali powder in controlling corrosion of carbon steel in sea water [Thondi, Tamil Nadu, India] has been evaluated by weight loss method. The weight loss study reveals that PD formulation consisting of 10mL of PD (pipali Dye) and 25 ppm of Zn^{2+} has 92% inhibition efficiency in controlling corrosion of carbon steel in sea water. A synergistic effect exists between PD and Zn^{2+} . Polarization study reveals that PD and Zn^{2+} system functions as mixed type inhibitor. The nature of the metal surface has been analysed by FTIR spectra.

Key words: Carbon steel, Corrosion, sea water, Electrochemmical techniques, FTIR, AFM.

Inter Collegiate Meet- National Level Seminar on "New Perspective in Science and Technology", (NPST-2016), 7th October, 2016- St Antony's College of Arts and Sciences for Women, Thamaraipadi, Dindigul, India.

Name of the teacher	Name of the Journal	Title of the paper	National/ International, E ISSN or P ISSN, LINK	Year of Publication
E. Amutha, Assistant Professor of Mathematics	International Journal of Current Research in Science and Technology	On Counting g-β Continues Functions	International 2394-5745	2017

International Journal of Current Research in Science and Technology Volume 3, Issue 2 (2017), 1-11.

ISSN: 2394-5745

Available Online: http://ijerst.in/

International Journal of Current Research in Science and Technology

On Contra $g\beta$ -Continuous Functions

Research Article

K.Amutha¹, K.M.Dharmalingam² and O.Ravi³*

- 1 Department of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
- 3 Department of Mathematics, P.M.Thevar College, Usilampatti, Madurai, Tamil Nadu, India.

Abstract: In this paper, we introduce and investigate the notion of contra $g\beta$ -continuous functions by utilizing $g\beta$ -closed sets [33]. We obtain fundamental properties of contra $g\beta$ -continuous functions and discuss the relationships between contra $g\beta$ -continuity and other related functions.

54C08, 54C10, 54C05.

MSC: Keywords: $g\beta$ -closed set, $g\beta$ -continuous function, contra $g\beta$ -continuous function, contra $g\beta$ -graph, $g\beta$ -normal space.

© JS Publication.

Introduction

In 1996, Dontchev [9] introduced a new class of functions called contra-continuous functions. He defined a function $f: X \to X$ Y to be contra-continuous if the pre image of every open set of Y is closed in X. In 2007, Caldas et al. [4] introduced and investigated the notion of contra g-continuity. In 1968, Zaitsev [36] introduced the notion of π -open sets as a finite union of regular open sets. This notion received a proper attention and some research articles came to existence. Dontchev and Noiri [10] introduced and investigated π -continuity and πq -continuity. Ekici and Baker [11] studied further properties of πg -closed sets and continuities. In 2007, Ekici [12] introduced and studied some new forms of continuities. In [17], Kalantan introduced and investigated π -normality. The digital n-space is not a metric space, since it is not T_1 . But recently Takigawa and Maki [34] showed that in the digital n-space every closed set is π -open. Recently, Ekici [13] introduced and studied contra πg -continuous functions. In 2010, Caldas et. al. [7] introduced and studied contra $\pi g p$ -continuity.

In this paper, we present a new generalization of contra-continuity called contra $g\beta$ -continuity. It turns out that the notion of contra $g\beta$ -continuity is a weaker form of contra β -continuity and a stronger form of contra $\pi g\beta$ -continuity [28].

2. Preliminaries

Throughout this paper, spaces (X, τ) and (Y, σ) (or simply X and Y) always mean topological spaces on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. A subset A of X is said to be regular open [31] (resp. regular closed [31]) if A

^{*} E-mail: siingam@yahoo.com

Name of the teacher	Name of the Journal	Title of the paper	National/ International, E ISSN or P ISSN, LINK	Year of Publication
E. Amutha, Assistant Professor of Mathematics	International Journal of Current Research in Science and Technology	Weakly g-w Closed sets	International 2394-5745	2017

International Journal of Current Research in Science and Technology Volume 3, Issue 3 (2017), 9–14. ISSN: 2394-5745

Available Online: http://ijcrst.in/

International Journal of Current Research in Science and Technology

Weakly g- ω -closed Sets

Research Article

K.Amutha¹, K.M.Dharmalingam² and O.Ravi³*

- 1 Department of Mathematics, Madurai Kamaraj University, Madurai, Tamil Nadu, India.
- 2 Department of Mathematics, The Madura College, Madurai, Tamil Nadu, India.
- ${\bf 3}\;\; {\bf Department}\; {\bf of}\; {\bf Mathematics},\; {\bf P.M. Thevar}\; {\bf College},\; {\bf Usilampatti},\; {\bf Madurai},\; {\bf Tamil}\;\; {\bf Nadu},\; {\bf India}.$

Abstract: In this paper, another generalized class of τ called weakly g- ω -closed sets is studied and the notion of weakly g- ω -open sets in topological spaces is also studied. The relationships of weakly g- ω -closed sets with various other sets are investigated.

MSC: 54A05, 54A10.

© JS Publication.

1. Introduction

The first step of generalizing closed sets (briefly, g-closed sets) was done by Levine in 1970 [6]. He defined a subset S of a topological space (X, τ) to be g-closed if its closure is contained in every open superset of S. As the weak form of g-closed sets, the notion of weakly g-closed sets was introduced and studied by Sundaram and Nagaveni [11]. Sundaram and Pushpalatha [12] introduced and studied the notion of strongly g-closed sets, which are weaker than closed sets and stronger than g-closed sets. Park and Park [9] introduced and studied the notion of mildly g-closed sets, which is properly placed between the class of strongly g-closed sets and the class of weakly g-closed sets. Moreover, the relations with other notions directly or indirectly connected with g-closed sets were investigated by them. The notion of ω -open sets in topological spaces introduced by Hdeib [4] has been studied in recent years by a good number of researchers like Noiri et al [8], Al-Omari and Noorani [1, 2] and Khalid Y. Al-Zoubi [5]. The main aim of this paper is to study another generalized class of τ called weakly g- ω -open sets in topological spaces. Moreover, this generalized class of τ generalize g- ω -open sets and weakly g- ω -open sets. The relationships of weakly g- ω -closed sets with various other sets are discussed.

2. Preliminaries

Throughout this paper, \mathbb{R} (resp. \mathbb{Q} , $(\mathbb{R} - \mathbb{Q})$, $(\mathbb{R} - \mathbb{Q})_+$ and $(\mathbb{R} - \mathbb{Q})_+$) denotes the set of real numbers (resp. the set of rational numbers, the set of irrational numbers, the set of negative irrational numbers and the set of positive irrational numbers). In this paper, (X, τ) represents a topological space on which no separation axioms are assumed unless explicitly stated. The closure and interior of a subset G of a topological space (X, τ) will be denoted by cl(G) and int(G), respectively.

^{*} E-mail: siingam@yahoo.com

Name of the teacher	Name of the Journal	Title of the paper	National/ International, E ISSN or P ISSN, LINK	Year of Publication
P. Poongodi Assistant Professor of Mathematics	International Journal for Scientific Research & Development	Note on Domination in Graphs with Bounded Degree	International ISSN (online): 2321-0613	2017

tor: 4.396 NEW | Submit Manuscript Online NEW

CALL FOR PAPERS: May 2022

Important Dates

Submission Last Date

25-May-22

Submit Manuscript Online

ADVANCED SEARCH NEW!

NEWS & UPDATES

Hello Researchers, you can now keep in touch with recent developments in the research as well as review areas through our new blog. To find more about recent developments please visit the below link:

http://ijsrd.wordpress.com

Follow us on Social Media:

Dear Researchers, to get in touch with the recent developments in the

Welcome to IJSRD (International Journal for Scientific Research and Development)

How to write a research paper? Need help? Click here

How to publish research paper? Check out? Click here

Call for Papers

Volume 10 - Issue 3 - May 2022

click here to submit manuscript online

IJSRD (International Journal for Scientific Research and Development) is a leading e-journal, under which we are encouraging and exploring newer ideas of current trends in Engineering and Science by publishing papers containing pure knowledge. The Journal is started with noble effort to help the researchers in their work and also to share knowledge and research ideas. All research

IMPACT FACTOR

4.396

INDEXING

CONNECT

LICENSE

100	of Rajkot BRTS -Rahul D Matariya ; P. A. Shinkar Abstract Cite Download	Engineering	India	1514
410	Comparative Study of 400 kV M/C Suspension and Tension Tower with Rectangular and Square Base -Viral Rameshbhai Kapadiya Abstract Cite Download	Structural Engineering	India	1515- 1517
411	Introduction to Direct Displacement Based Design Procedure for Seismic Designing of Reinforced Concrete Buildings -Saumya Shukla ; Tabish Izhar; Mohd Kashif Khan; Neha Mumtaz Abstract Cite Download	M.Tech in Structural Engineering	India	1518- 1522
412	Note on Domination in Graphs with Bounded Degrees -S. A. Kiruthika ; P. Poongodi Abstract Cite Download	Engineering Mathematics	India	1523- 1525
413	Open Loop Simulation of Unified Power Flow Controller -Tarunkumar Mistry Abstract Cite Download	Electrical Power System	India	1526- 1529
414	A Review on Tampering Detection Methods in Digital Image Forensics -Priyadarshini S; Dr. S. Miruna Joe Amali Abstract Cite Download	M.E COMPUTER SCIENCE	India	1530- 1532
415	Performance Evaluation of Electric Tricycle -Sapna B. Verma ; Hiteshree Sakhare; Nehal Kanhare; Amit Dodke	Electrical Engineering	India	1533- 1535

Note on Domination in Graphs with Bounded Degrees

P. Poongodi¹ S.A. Kiruthika²

¹Assistant professor ²Research Scholar ^{1,2}Department of Mathematics

^{1,2}Sakthi College of Arts and Science for Women, Oddanchatram – 624 619.

Abstract— Let G be a graph and D a set of vertices such that every vertex in G is in D or adjacent to at least one vertex in D. Then D is called a dominating set of G and the smallest cardinality of such a dominating set of G is known as the domination number of G, denoted by $\gamma(G)$. This paper is a study of the domination number in graphs with bounds on both the minimum and maximum degrees.

Key words: Domination set, Domination Graphs, Bounded Degrees, Domination Number, Minimum Degrees, Maximum Degrees

I. INTRODUCTION

In this section, we define the necessary concepts that will be used throughout this paper and give a brief overview of the history of domination theory and define the necessary domination concepts that will be used.

A. Preliminary definitions:

A graph G is a finite nonempty set of objects called vertices (the singular is vertex), together with a (possibly empty) set of unordered pairs of distinct vertices of G called edges. The vertex set of G is denoted by V(G) (or V if no confusion is likely), while the edge set of G is denoted by E(G) (or E).

The number of vertices in V(G) is denoted by n(G) which is also known as the order of the graph G, while the number of edges in E(G) is denoted by m(G). A graph G is trivial if n(G) = 1 and non — trivial if $n(G) \ge 2$. For a graph G, if n(G) = n and m(G) = m, then G is called an (n,m) graph. Unless otherwise specified, the symbols n and m (or n(G) and m(G)) will be reserved exclusively for the order and number of edges respectively of a graph G. By G = (V, E) we will imply the graph G with vertex set V and edge set E.

The edge e=u v is said to join the vertices u and v. If e=u v is an edge of G, then u and v are adjacent vertices, while u and e are incident as are v and e. Furthermore, if e_1 and e_2 are distinct edges of G incident with a common vertex, then e_1 and e_2 are adjacent edges.

A simple graph G is a graph that has at most one edge between every pair of distinct vertices and there is no edge in $E\left(G\right)$ joining any vertex in $V\left(G\right)$ to itself. Throughout the text we will only consider simple undirected graphs.

The compliment \overline{G} of a graph G is the graph with vertex set V(G) and such that two vertices are adjacent in \overline{G} if and only if these vertices are not adjacent in G.

B. Domination in Graphs:

Let G be a graph and D a set of vertices such that every vertex in G is in D or adjacent to at least one vertex in D. Then D is called a dominating set of G, and the smallest cardinality of such a dominating set of G is known as the domination number of G, denoted by $\gamma(G)$. A minimal dominating set of G is a dominating set of G such that no proper subset $S' \subset S$ is a dominating set.

Let G = (V, E) be any graph and $0 < c \le 1$, then we say G is c – dominated if $\gamma(G) \le c |V|$ and D is c – dominating set and $|D| \le c |V|$. Furthermore, if S and T are subsets of V, then we say that S is a dominating set of $G(S \cup T)$.

Now let B(G) be the set that consists of all vertices in G that have degree not equal to two. i.e,

$$B(G) = \{ v \in V \mid \deg(v) \neq 2 \}.$$

For $v \in B(G)$, the connected component of G - (B(G) - v) containing v is said to be the 2 – graph of v. If $\delta(G) \ge 2$, then each vertex of the 2 – graph has degree two in G, except for v itself. The 2 – graph consists of edge disjoint cycles through v (2 – graph cycles) and paths starting at v (2 – graph paths).

III. DOMINATION IN GRAPHS WITH MAXIMUM DEGREE $\label{eq:three} THREE$

The aim of this chapter is to show that a graph G with n vertices, e edges, i isolated vertices and maximum degree